WEAKLY SUPERCRITICAL CONVECTION

E. A, Kuznetsov and M. D. Spektor UDC 539.4

1. Introduction

The experimental and theoretical investigation of convection began relatively recently. At the start of
this century in the first experiments in a horizontal layer with weak supercriticality Bénard observed the for-
mation of a spatially periodic hexagonal structure. The linear theory of this phenomenon, convective insta-
bility, was already understood by Rayleigh. As for the study of a nonlinear regime, a sufficiently consistent
theory of this phenomenon was constructed relatively recently [1, 2.

According to this theory, hexagonal cells form owing to a weak dependence of the viscosity 7 on the tem-
perature T. In particular, from this theory there followed the conclusion, confirmed experimentally, that the
direction of convective circulation is determined by the sign of 81/8T, while the excitation of cells takes place
strictly up to an amplitude proportional to 87/0T (for more detail on this see [3] and the literature cited there).
When such a dependence of the viscosity on the temperature is absent, one-dimensional periodic structures
form: rollers. And the excitation of rollers, as shown by subsequent experiments [4] using Doppler velocity
meters, takes place mildly in complete accordance with the Landau law [5]. It should be noted that from the
first experiments of Bénard the formation of cells has been observed in those cases when the upper surface is
free. But when the upper surface is rigid one observes rollers at a weak supercriticality, as a rule, while
hexagonal cells, developing due to the weak dependence of the viscosity on the temperature and existing, accord-
ing to [2], in a small range of supercriticalities, are observed rather rarely for this reason,

In the present report it is shown that at a weak supercriticality the effects connected with a free surface
are decisive in the formation of hexagonal cells in a number of cases. The formation of such cells represents
an analog of a phase transition. This fully pertains to any transition from a laminar to a turbulent state. For
example, a phase transition of the second kind corresponds to a mode of mild excitation while a phase transi-
tion of the first kind corresponds to a mode of hard excitation. We emphasize that the transition to weakly
supercritical convection in a horizontal layer is two dimensional. The latter is connected with the fact that
unstable states are characterized by a wave vector k lying in the horizontal plane and a discrete number n,
which in the simplest case coincides with the number of half-waves vertically., Therefore, at a weak super-
criticality perturbations with the minimum number n build up; because of isotropy in the horizontal plane their
increment ¥ is positive in a narrow layer near k| =ky. (Y{( = 0). This instability is aperiodic, and therefore
three-particle processes will be important in the nonlmear stage. Perturbations whose wave vectors form an
angle of /3 are connected with each other in these processes. It is fundamental that three-particle processes
do not stabilize an instability. This can be understood from the following. Let us consider three excited modes
with equal and real amplitudes A, the wave vectors of which just form an angle of /3. Then the evolution of A
is determined from the equation

94
=T A+ UA?,

simple integration of which leads to

1 U\ ~ Ul-1

[t + B4
From this it is seen that when U>0 there is a time when the amplitude goes to infinity. This is a so-called
explosive instability. When U <0 a singularity also develops, only for perturbations differing from those dis-
cussed by a phase shift of 7. Thus, three-particle processes lead only to a correlation of three interacting
modes; these processes do not remove the degeneracy with respect to angle and do not stop the instability.
Stabilization of an instability can only be provided by a four-particle interaction. It is clear that in describing
such an interaction near the threshold one must be confined only to the region near |k| = ky, since far from it
the perturbations die out: 'Yk<0 On this basis the equation for the amplitudes A of the excited perturbations
has the form
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_a_aftg = vpdy + —g— SAhlAkgﬁk-—hl—kzdkldkz — %—5‘ T-hklkzksAklAthh36k—~k1—k2—h3dkldkzdk31 (1.1
where U and Tkk, k.k; are matrix elements of three-particle and four-particle interactions taken at surfaces
lki] = kg, and A = A%y, We note that Eq, (1.1) presumes that the nonlinearity is small. This actually means
that a matrix element U at a resonance surface must have a smallness not connected with the supercriticality.
For example, this criterion is invalid for supercritical flows forming as a result of the development of a
thermocapillary instability, due to the dependence of the coefficient of surface tension « on the temperature,
In particular, all the quantitative results of {6}, in which this effect is analyzed, are therefore erroneous,

It should be noted that this problein, formulated in terms of Ay, is similar to the problem which we con-
sidered on the development of hexagonal relief at the surface of a liquid dielectric when a vertical field is
turned on [7].

In the present report it is shown that in weakly supercritical convection the matrix element U differs
from zero owing to two weak effects: the effect of finite deformation of the free surface and the thermocapil-
lary eifect with weak nonisothermicity of the free surface. It is just this circumstance which provides for the
existence of stable hexagonal cells with weak supercriticality, With large supercriticalities the cells become
unstable, while one-dimensional structures (rollers) acquire stability.

2. Basic Equations

To describe convection we use the dimensionless Boussinesq equations [3] for the velocity and the per-
turbation of the temperature T, reckoned from the equilibrium value Ty =—Az+B (A>0):
Pr—ldv/dt = —yp + Av -+ RaTey (2.1)
ar/ot 4+ (vwy)I' = AT 4 v,, divvy = 0, (2.2)

where Ra = PgAh’/vy is the Rayleigh number; Pr = y/y is the Prandtl number; e, is the unit vector directed
along the z axis; B is the coefficient of thermal expansion; v and x are the coefficients of viscosity and thermal
diffusivity; h is the size along the z axis. In these equations time is measured in units of h¥%x, velocity in units
of x/h, and temperature in units of Ah, ‘

Henceforth we will take Pr>>1, For water, for example, Pr = 5, while for oils the Prandtl number
reaches 102 and sometimes 10°, Therefore, the inertial term in Eq. (2.1) can be neglected.

Now let us formulate the boundary conditions. We will distinguish two types of boundary conditions at
the lower boundary. The first, the so-called Rayleigh boundary conditions, are

v:=0,0v,/02=0, T =0 at z=0, (2.3)
while the second are those with a solid boundary:
v=0,7=0 a z-={. (2.4)
At the free deformable surface z = 1+z(r1, t) the first boundary condition represents the kinematic con-
nection
Yot = v, — (v v.)i; (2.5)

the second represents the equality of forces
¢ LWALL R .9 ‘ ov 2,
[ E+WALL M2a Cz] " ”{ Pou ox, ax‘ik]n"; @.6

and the third represents the condition of isothermicity

T!z=1+§ = C, (2-7)

where n is the normal to the surface; W = a/pgh®; u = vy/gh®>. From these boundary conditions it is seen that in
the limit p —0 the conditions (2.5)-(2.7) change into the Rayleigh boundary conditions.

For layers which are not very narrow the parameter y is actually small, which one can ascertain by
representing g in the form

B = (ve/@g)*Pr—,

where vy, = v/k* and o, = (g/k)** are the damping and the frequency of a gravitational surface wave with k~h-t
The ratio wg/Yg appearing here represents the quality of the waves, which is high, as a rule. For this reason
the parameter p is small.
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Another possible effect which exists at a free surface is connected with the dependence of the coefficient
of surface tension ¢ on the temperature [8]. Naturally, this effect is possible only when the free surface is
nonisothermal. The nonisothermicity of the surface can be modeled by the interpolation condition [3]

—x%dT/on = a(T — Th),
where « is the coefficient of thermal conductivity; T, is the temperature of the upper mass as z <o,
We will assume that the nonisothermicity is weak, which corresponds to the condition b = ah/x > 1.

Therefore, it is clear that in the thermocapillary effect one should not allow for the deformation of the free
surface, which is characterized by another small parameter p.

Then taking o = ¢g— oT and changing to perturbations, we arrive at the following boundary conditions:

ov aT ;
v,=0, —F=—By.T, T—-'gg at z=1,

where B = Ach*pvy. We emphasize that as b—« these boundary conditions once again change intothe Rayleigh
boundary conditions,

Let us turn to the caleulation of ¥, U, and Ty k k.. First we will briefly discuss the linear theory of con-
vective instability. We note that the operator

L(v)___(—vp-&—Av—}-BaTe,) — Ly
I AT 4 v,

with ¢ = 0 and b = = is self-adjoint if the scalar product is defined in the form

(7, ¥y) = j (Ra 737, -+ viv,) dr.

From this it follows, in particular, that the instability is aperiodic. It is obvious that this stability also remains
aperiodic when p<«<1 and b>1.

Assuming Rayleigh boundary conditions at the lower surface and u = 0 and b = «, we write the expression
for the increment (cf. [3]) as
k% (Ra — Ra, ) (2.8)
Yen = W
for the temperature eigenfunctions @y = sin n7z, and for the velocity

Ra &* . ik Oypn
u == —ee—e———— S1N 12YZ = s
zhn (%% + a%a?)t 2, Uswn K2 Oz

where Ray, = (K*+ n’rd) ¥ K2,

From Eq. (2.8) it follows that the instability threshold is reached atn =1, k= ky = A2, and Ra, = 274,
Therefore, near the instability threshold ¥ ~Ra—Ra,. We note that the increment behaves exactly the same
way when the lower surface is solid. According to [3], in this case the instability threshold is reached atn = 1,
ko = 2.682, and Ra, = 1100, 657, Then the neutral eigenfunction has the form

sin %, (1 — z)}

: . . ~i31/3
Op = sinx, (1 —2) — 2sin %, Re [e Bl —sm
2

where
%y = 3.569; %, = 1.895 + i4.555; (wia-+ K3)° = koRa,.

Henceforth the eigenfunctions of the linear problem with Ra = Rag, k = kg, # = 0, and b = «» will be desig-

nated as @ and uy.

Now let us proceed to the calculation of the matrix elements. First we consider the case of p = 0 and
b = w. In this limit, as was noted, the operator L is self-adjoint, while the boundary conditions are linear.
Therefore, the sole nonlinear term is the term (vV)T in Eq. (2.1). Then expanding ¥ by eigenfunctions of the

linear problem,
Y= 5. Ppn () Apn \b) 3k (Ahn = A_yn),
T

we arrive at the equation
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1%z

From the self-adjoint nature of the operator L and vz = 0 at z = 0.1 we get the important result that the matrix
element Uy 1, is equal to zero at the surface |ki] = kp. In fact, by virtue of the identity

2 n MMy % * £
0={nrar=—2 2 { (o3 liisdindion A,
nning

+ c.c, )6h+k1+h2dk1dk2dk

and the arbitrariness of Ay, the following relations develop for the matrix elements:

n fing ny [nng
(Uk lk1k2 + U,

Mg M =
rey + Uy \hlh Ophythy = 0.

Taking n = n; = n, = 1 and |kj| = kg in this equation, we arrive at U = 0, Thus, three-particle terms are absent
in the expansion (1.1) with # =0 and b = «. We emphasize that this conclusion is also valid when the upper sur-
face is solid., The latter means that the expansion in (1.1) starts with the four-particle term. This in turnleads
to a mild mode of excitation, in full accordance with experiment [4] and with the Landau theory [5, 9].* There~
fore, in the Boussinesq approximation the matrix element U can be different from zero only because of the free
surface. Here we can distinguish two factors: first, the nonlinearity of the boundary conditions, and second,
the non-self-adjoint nature of the operator L. Since it <«1 and b>1, the two effects (the effect of a deformable
surface and the thermocapillary effect) can be considered separately.

3. Calculation of the Matrix Elements

First we calculate the contribution to the matrix element U due to the finite surface deformation. First
of all we make several simplifications., We recall that the matrix element U is defined near the surface lkil =
kg, i.e., in the three-particle interaction the wave vectors of the perturbations form a regular triangle with good
accuracy. Therefore, for example, (v;v.) T z% (;;z 7 when z = 1. It is also obvious that the matrix element U
due to a finite deformation is proportional to . Therefore, it is necessary to neglect the term 8z/0t in (2.5).
Then expanding all the functions with z = 1+¢ in series with respect to £, we arrive at the following boundary
conditions:

a
=t =
JY dv,
(——1+WA¢)(T+1~£—)=u(—p+2 az); (3.2)
dv avz 520__]:
V-_va+ 5z £ _ZWV-LT—_ T azz § (3.3)

which, in an approximation linear with respect to amplitude, have the form

[N
0z

(3.4)

bi}
v, =0, =0, (—1+WA¢)T=;J,(—p+2—;Z’—).

With such linear boundary conditions the operator L is no longer self-adjoint, i.e., the boundary conditions at
the free surface for the eigenfunction ¥ of the conjugate problem no longer coincide with the analogous ones
for ¥, They are determined from the equation
F, LY) — (L ¥, ¥) = 0.
One can verify that the difference between these integrals is reduced to an integral over the surfacez = 1,
from which one can obtain
(—1 + WA, )u, = pRa 38/z, ® = 0, du /02 + v u, = 0. (3.5)

The boundary conditions for the conjugate problem at the lower surface are the same as for the direct

problem.

Now let us proceed to the derivation of the equations for the amplitudes Ai. We note that in these equa-
tions the matrix element T develops in the second order with respect to Uﬁlﬁiﬁg, which is not connected with

*It should be emphasized that for convection the sign of the matrix element T is positive, as will be shown
below.
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TABLE 1

L)
C‘\LQ
Boundary con- U.b
ditions at -&i- & t T Tose Tass Tata Targ
z=0 Rt i B
™
)
av,
v =0, —-——O 3,202 | —0,205 5,552 5,153 4,753 4,351 3,950
vr=0, v, =0 3,207 | —0,225 | 10,225 9,364 8,506 7,569 6,810

the small parameters p and b~! whereas the matrix element U is proportional to them. Therefore, at super-
criticalities (Ra—Ra,) 2~u, b~! all the terms in (1.1) prove to be of the same order. Thus, the solution of
Egs. (2.1) and (2.2) near the threshold must be sought in the form of an asymptotic series by powers of the
supercriticality,

\I‘r = ‘Yl + 6‘1’,
where ¥ is the exact solution of the linear problem; 6¥ is a higher-order perturbation.

Then expanding v and T by eigenfunctions of the linear problem, from (2,1) and (2.2) we arrive at the
equation ‘
Ra 04,/01(0:18,) = (pr, LY) — Ra(®r|(v;y T1)p> — RaCBr|(v;v8T)s> — Ra(@al(6vy T,
where ([y denotes integration with respect to z.

In this equation the last two terms after the iteration basically correspond to a four-particle interaction
not containing the small parameters p and b1, In particular, the last term is basically equal to zero at the
surface [k;j| = ko. Therefore, when finding 6T and év from the equations

= —y8p 4+ ASv + RabTe, viyTy = AST + 6v, (3.6)
it is sufficient to use the Rayleigh boundary conditions at z = 1:

62
8, =0, - (8v.)=10, 6T =0.

If we apply the rot rot operator to the first equation of (3.6) and change to the Fourier components, then
we obtain the equations

. 14 :
(Vv 7o)y = -ﬁj ORI

6Tk T ((P) AklAkgﬁh—hl—kzdk dkz,
where the function
1— 1 F: F
g (p) = _._C_OS.E ‘7 (uozh@oh)"i‘ __'_‘.'_fﬂ( oz g;)h uozk @0)

is connected with 7(¢p) by the equations
0 = —A%w, + k*Rart, g = At +w, (3.7

with the boundary conditions (2.3), (2 4), and (3.4) with p = 0, while ¢ is the angle between the vectors k; and ky
(k% = 2k3(1+cos ¢)) and A = 8%z~

We note that in the case of a Rayleigh lower boundary a particular solution of the system (3.7) satisfies
the boundary conditions. And in the case of a solid lower surface the corresponding solution of the homogeneous
system must be added to the particular solution,

Then substituting 6T into the integral —Ra(®,|(viv67T);>, we obtain

— o | 1010 Ayl Ay oty rgrg Bl

where I (g) = -—‘S‘g((p)’r((p) dz; @9 is the angle between the vectors k; and k.

A matrix element of the four-frequency interaction is obtained from this by symmetrization over all the
wave vectors. For Rayleigh boundary conditions at the surface [k;| = kj the matrix element is
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‘ 9n? 4(5 +cos)? (1 — cos g)° 4(5— cos@)? (1 + coa g)? .
To= Tklka—hl-kz ='§2j + 4 (5+ cos @)® — 27 (1 + cos @) 4(5— cosg)® — 27 (1 — cos )

The values of T(p for a solid lower boundary are given in Table 1,

Now let us turn to the calculation of the matrix element U, As indicated above, it is different from zero
because of the nonlinear boundary conditions and the non-self-adjoint nature of the operator L., The contri-
bution of the first effect is determined from the integral

(ns L¥) = (Libs, ¥) + (Pn LY) — (L, V),
where the first term leads to a term linear with respect to amplitude,
Ra v(8410:>41,
while the difference between the last two terms comes down to an integral over the surface z = 1 and is dif-

ferent from zero by virtue of the nonlinear boundary conditions (3.1)-(3.3). Using the explicit expression for
them, we can reduce this difference to the form

o8, _ ar 1 ouy, 6%, 1 0,
s‘dr‘“{Ra 3z Tb—z—_gkg 9z 9.8 T‘—_Z-po 9z :

!

In this expression we expand T and v; in series with respect to the eigenfunctions of the linear problem.
Finally, the contribution to the matrix element U due to the nonlinear boundary conditions has the form

, i
B (3”'021; - _k_ﬁ- uozh> 1 9
0 , / " » ’ \
UN = {—2‘ Yoz (_ Ugzp — uozh‘) —Ra, (on)2}1 .
=]

nRa (0, |0, (1 4+ Wk;) kg !

;

Now let us consider the contribution to U due to the integral —Ra(@,] (vivT)ry. When u = 0 this integral
is equal to zero by virtue of the self-adjoint nature of the operator L (see Sec. 2). Therefore, we expand the
eigenfunctions of the direct and conjugate prpblems in series with respect to p. Then being confined to terms
of first order with respect to p (8¢, &y ~ n), we obtain

— Ra (80, — 804) | (WovO)r j Ay Ay Brny sy,

The expression (ugV® )k appearing here is precisely the function g{@) which we introduced with ¢ = 2743, so
that the matrix element is

—Ra((88, — 88,)|(uyOo)s) = (5 — Sy, LD),

where & = (1, w,) is the solution of the system (3.7} with ¢ = 2n/3. Integration of this matrix element by parts
leads to a sum of surface terms when z = 1. Then using the boundary conditions (3.4) and (3.5), we arrive at

the expression
.’ ’ w"’ B u“
U, = £ Bon | 3w, — -2 | — 17| Buy, — &
7 (Ogn |8 x> (1 + WhY) kg kg

Thus, the matrix element U due to the finite deformation is

7=1

Usg=Uyx+ Ug
in particular, with Rayleigh boundary conditions at the lower surface we have
: 1124 p Ra,

47 BB (1 + Wk

The value of Uy for a solid lower boundary is given in Table 1.
The matrix element due to the thermocapillary effect is calculated similarly:

B ’ ’ r .’ (3.8)
Ut = m (®osz —T uozh) |z=1
(see Table 1). The total matrix element U due to the free surface consists of the sum Ug+Uy.

Let us give the expression for the matrix element Uy connected with the temperature dependence of the

coefficient of viscosity:
_ 7 28 0 a‘”oi d Guy; | Ouy 3.9
Un=1a Oon|®ar> 5 ( oz, )k "@o( 7 T 9z; ) de, 9

where &= — %Ah.
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4, Steady-State Solutions and Their Stability

Now let us proceed to a study of steady-state solutions, being confined to the consideration only of
periodic solutions with vectors g of the reciprocal lattice whose lengths are equal to the critical value k.

By virtue of the two-dimensionality, Eq. (1.1) has only three steady-state periodic solutions, in the form
of hexagonal cells

3
A, =4, iZ;;l (Gk—qi + 5k+qi)a Gt G+ a=0
square cells
Ap = Ay (Br—g; + Bhtgy + Op—gy + 854q,),  (q192) =0,

and rollers
Ak = Ax(sh—_d + 6h‘+ (1)’

the respective amplitudes of which are

) 1/2
_ U Yz, U 2
As—4Tﬂls+To+sgnU[4Tn/3+To+(4Tﬂ/3+To)] y

A 27k0 1/2 A= zyho 1/2
2 2r n/s +7 0 ’ e T 0 ’

The first solution is characterized by a hard mode of excitation with a jump at Ra = Ra; having a size
v As = 2U/(4Tws + To),
while the other two are characterized by excitation with a mild mode:
A3 ~V'Ra —Ra,,.
The stability of these modes is determined from the linearized equation (1.1) for the amplitudes aj:

3 1

% =+ U jAhlah,ﬁk-kl—k,dkldkz — 75 T niynghgAng Ang@ngOnny—ny—ny@hidkodks. (4.1)
As in [7], we are confined to the consideration of perturbations ai(t) = aker t with wave numbers on the

order of k; (k—k;~+vRa—Rac), which are the most dangerous from the point of view of stability. For such per-

turbations

?k =& — f(k - ko)zv

where
¢ 6zﬂak

_ {¥en|Ogn) . _ . f—
==L g=Ra-—Ra; f_? T

IECRICIY
First let us study the stability of rollers in detail. Here and later we distinguish three regions for per-
turbations @) whose wave vectors lie in the layer of k= kg~ vE. In the first region the angle ¢ between the per-
turbation vector k and the vector of the reciprocal lattice is not close to any of the values of 0, 73, 21/3, or =
(external stability, nonresonance perturbations), in the second region the vector k is close to one of the vectors
of the reciprocal lattice g and —q (internal stability), and in the third region the angle ¢ is close to /3 or 27/3,
when the perturbations are resonantly connected with each other by a three-particle interaction.

In the first case the eigenmodes are plane waves, for which the dispersion equation has the form
T =y, — Ty4i,
where ¢ is the angle between the vectors k and q. Rollers are stable relative to such perturbations.
In the second region the eigenfunctions of Eq. (4.1) represent combinations of two perturbations:
ap = @y0p—gy + a-10ptg—x «

The system of equations for the amplitudes @; and ¢—; is decomposed into two equations: for even (cy = (a;+
a_;)/2) and odd (c. = (ay — a_;) 21) perturbations. Their eigenvalues are (cf. [10])

T, = —2ce — fx? cos® ¢ < 0, [- = —fx? cos® ¢ < 0,
where ¢ is the angle between the vectors % and q.
In the third region the eigenfunctions also represent combinations of two perturbations,
ap = @y0np,—n+ Cy0n—py—xn

(k; = kot q), with the eigenvalues
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T 2l 1 3 . 1/
I'= (T" — T,,/s)Af — % L1 — 508 2@) + [(UAl)2 + -1—6-]‘2144 sin® 2(9] .

The condition

T
Fmax=(‘2_0‘_Tn/3)A§+|U§Al<0

determines the region of stability of rollers:

L U? = ce,.

¢(Ra — Ra y>
( ¢ (2Tn/3 - T0)2

The stabilities of square and hexagonal cells are investigated in a similar way.

Square cells always prove to be unstable. Itis fundamental that they are unstable relative toperturbations
with wave vectors from the second region; for these perturbations

Tmax = (2Twjs — To) 43> 0.
As for hexagonal cells, they are stable relative to nonresonance perturbations
I'=ce — f(k — k)’ = (To + Totwss + Tors) A3 <0
and to odd resonance perturbations
T = —fu¥2 & fu?lh << 0, ' = —3UA; — f?/2 < 0.
For even resonance perturbations the eigenvalues have the form

2 2
T = 206 — 2 (Ty + Tay) 43 — 2= 2 2,
1 2
T= —ce— 5 (Ty+ 4Twp) 43 — L.

The condition I <0 determines the region of stability of hexagonal cells

4 U? To+ Ty o0
e el 4 —C T[] == e,
2 Tk 4T3 = (2T — To)’ :

From this it follows that in the range of supercriticalities €; < £« €, both hexagonal cells and rollers are stable.
The transition from one state to another is hard.

Thus, for weak supercriticality the first bifuraction is the transition to hexagonal cells with a hard mode
of excitation. This transition is due to a three-particle interaction, the matrix element of which differs from
zero for a free upper boundary owing to the thermocapillary effect and the deformation of the surface.
Naturally, with allowance for the temperature dependence of the viscosity all three of these effects make an
additive contribution to U. The relative contributions of each are determined by the parameters Ut/Un and
Ud/Un- For the first of them, in accordance with (3.8) and (3.9),

@94 \2 Pr dlnc
U 1Un ~ ( ;f) 3 Ty’
where w,, and Y, are the frequency and the damping of a capillary wave with k~h~!, From this it is seen that
this ratio can be larger than unity owing to the factor (wu/ye }*Pr. For water with h = 1 cm, for example,
Ub/Un ~10%b, i.e., these two effects are comparable at a nonisothermicity b~ 10% It should be emphasized
that the thermocapillary effect, characterized by the parameter B, influences the convective instability. In very
narrow layers h < h. = (0/pgB)/? this instability is reorganized and changes into a thermocapillary instability

[9). Therefore, our analysis is valid when h>h,.

Ag for deformation effects, they are important when d In pAd Inn~1. For almost all liquids, however,
this parameter is small, ~ 10"1, 1072, It becomes on the order of unity in the vicinity of the inversion point Tg,
where 87/0T = 0. For sulfur, for example, Ts = 153°C.
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EXPERIMENTAL INVESTIGATION OF MIXED AIR CONVECTION
NEAR A HORIZONTAL CYLINDER

V. A, Belyakov, P. M, Brdlik, UDC 536,25
and Yu. P. Semenov

Heat exchange with mixed convection near a horizontal cylinder plays an important role in a number of
technological processes, In addition, a cylinder is a convenient model for a fundamental investigation of the
process. Several reports on this problem have now been published. The boundary-layer equations, written in
the Boussinesq approximation, have been solved numerically for the region of a cylinder where the use of
boundary-layer theory is posgsible [1-3]. The numerical investigation was carried out most fully in [1], where,
along with results on heat exchange and friction, data were obtained on the influence of gravitational forces on
the separation of the boundary layer. Inall the reports the velocity distribution at the outer limit of the
boundary layer is taken either from experimental data for purely forced motion or as for streamline flow of an
ideal fluid, since there are no data for mixed convection. The average heat transfer ata constant wall tem-
perature or at a constant heat flux is mainly considered in the experimental reports [4-7]. Only in [7] is the
local heat exchange of a horizontal cylinder with a constant heat flux investigated for transverse flow over it.
Data are absent on the hydrodynamic environment over the entire perimeter of a cylinder under conditions of

mixed convection.

In the present report an experimental investigation is made of the flow of a vertical air stream over a
horizontal isothermal cylinder when the directions of forced motion and the gravitational forces do and do not
coincide. The influence of natural convection on the position of the separation point of the boundary layer is
investigated. The velocity and temperature distributions are measured. The local and average heat fluxes are
determined. The measurements are made at Gr =~ 10%, Re = 40-4000, and Gr/Re? = 0.01-~20.

The investigations were conducted in the working chamber of a vertical low-velocity wind tunnel which
could operate in closed and open schemes. The stream velocity was varied in the range of 0-1 m/sec and the
stream temperature was varied from 20 to 50°C. The degree of stream turbulence in the working chamber did
not exceed 0.3%. A cylinder made of copper pipe 60 mm in diameter apd 200 mm long was used as the working
body. The degree of blockage of the stream by the cylinder was 0.12., As is known, such a level of turbulence
and stream blockage does not affect the heat exchange for laminar flow over a cylinder. The cylinder was
cooled or heated, depending on the required direction of natural convection.

The separation point of the boundary layer was determined through visualization of the flow by the method
of a laser light "knife." A thin streamer of tobacoo smoke, which moved along a streamline in the boundary
layer, was supplied in the plane of the "knife" in the vicinities of the upper or lower critical points of the
cylinder. The separation point was accurately determined visually and from photographs from the sharp change
in the direction of motion of the smoke streamer. The accuracy of determination of the angular coordinate of
the separation point was no worse than 2° The velocity was measured with alaser anemometer of type 55L from
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